0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Зазор между генератором и датчиком холла

Системы зажигания с датчиком Холла

Магнитоэлектрический датчик Холла получил свое название по имени Э. Холла американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

Элемент Холла представляет собой тонкую пластинку, выполненную из полупроводникового материала (кремний, германий), с четырьмя электродами. Если через такую пластинку проходит ток I и на нее одновременно действует магнитное поле, вектор магнитной индукции В которого перпендикулярен плоскости пластинки, то на параллельных направлению тока гранях возникает э.д.с. Холла, которое определяется по следующему выражению:

Uн = кхIВ/d,
кх – постоянная Холла, зависящая от материала пластинки; d – толщина пластинки

Рис. Принцип работы элемента Холла:
1 – магнит; 2 – пластинка из полупроводникового материала

Через пластинку пропускается ток примерно 30 мА, тогда как напряжение Холла составляет 2 мВ, увеличиваясь с ростом температуры. Пластинка обычно представляет одно целое с интегральной схемой, осуществляемой усиление и формирование сигнала.

Если между магнитом и полу­проводником поместить перемещающийся экран с прорезями, получим импульсный генератор Холла.

Схема прерывателя-распределителя с датчиком Холла представлена на двух следующих рисунках.

Рис. Принцип работы датчика Холла:
1 – постоянный магнит; 2 – ротор; 3 – элемент Холла; 4 – операционный усилитель; 5 – формирователь импульсов; 6 – выходной каскад; 7 – блок стабилизации

Магнитное поле создается постоянным магнитом 1, а прерывание магнитного поля осуществляется ротором (экраном) 2 с окнами, укрепленным на валике распределителя. При прохождении окна ротора около постоянного магнита силовые линии его магнитного поля пронизывают поверхность элемента Холла и на его выходе возникает ЭДС. Если воздушный зазор между магнитом и элементом Холла перекрывается шторкой, магнитное поле замыкается на шторку экрана и не попадает на элемент Холла.

Рис. Схема прерывания магнитного потока:
1 – датчик Холла; 2 – держатель датчика; 3 – воздушный зазор; 4 – магнитный поток; 5 – ротор

Количество шторок и окон экрана соответствует количеству цилиндров двигателя. Ширина шторки экрана соответствует углу, при котором выходной транзистор коммутатора пропускает ток через первичную обмотку зажигания.

Учитывая небольшое напряжение, вырабатываемое элементом Холла, оно обрабатывается и усиливается.

Операционный усилитель 4 усиливает сигнал датчика и через формирователь импульсов 5 подает сигнал на базу выходного транзистора 6 и открывает его. Для исключения влияния на выходной сигнал датчика колебаний напряжения сети и температуры в схеме датчика имеется блок стабилизации 7.

При нахождении шторки экрана в щели воздушного зазора, величина магнитного потока резко падает, вследствие замыкании магнитного потока на шторку.

Рис. Импульсы датчика Холла:
В – магнитная индукция; Uн – напряжение, вырабатываемое элементом Холла; Ug – напряжение, вырабатываемое датчиком Холла; I – ток первичной обмотки катушки зажигания; tz – момент зажигания электрической искры; а – изменение магнитной индукции; б – изменение напряжения, вырабатываемого элементом Холла; в – изменение напряжения, вырабатываемого датчиком Холла; г – изменение силы тока первичной катушки зажигания.

Напряжение, вырабатываемое элементом Холла Uн, поступает на операционный усилитель, где происходит усиление сигнала. После этого ток поступает на формирователь импульсов и там происходит переработка из аналогового сигнала в цифровой. Затем полученный цифровой сигнал поступает на выходной каскад и окончательно усиливается до величины напряжения Ug, достаточного для работы транзисторного коммутатора. При этом напряжение Ug за счет инверсии выходного каскада вырабатывается в момент отсутствия напряжения Uн с входа элемента Холла, т.е. в момент перекрытия шторкой экрана воздушного зазора, что соответствует напряжению Uн ниже 0,4 В. В таком положении экрана транзистор выходного каскада Т0 находится в открытом состоянии, при этом от коммутатора через транзистор Т0 проходит ток и при этом база транзистора Т1 соединяется с массой.

Рис. Электрическая схема коммутатора и датчика Холла:
1 – датчик Холла; 1а – выходной сигнал; 2 – коммутатор; 3 – замок зажигания; 4 – дополнительный резистор; 5 – шунтирование дополнительного резистора; 6 – катушка зажигания

Учитывая, что проводимость транзистора Т1 n-p-n, отсутствие положительного потенциала этого транзистора приводит к его закрытию. В результате этого прекращается подача положительного потенциала на базу В через резистор R4 и коллекторно-эмитерный переход транзистора Т1. При этом ток не проходит через резистор R7 и база В включения транзисторов Т2/Т3 замыкается на массу. Учитывая проводимость этих транзисторов n-p-n, отсутствие положительного заряда на базе В, транзисторы закрываются и ток в первичную обмотку катушки зажигания не поступает. При выходе экрана из воздушного зазора напряжение с элемента Холла достигает 0,4В и через первичную обмотку катушки зажигания начинает протекать ток.

В момент попадания зуба ротора в зазор датчика на выходе датчика создается напряжение Umax примерно на 3 В меньше напряжения питания. Если через зазор датчика проходит прорезь ротора, напряжение на выходе датчика Umin близко к нулю (не более 0,4 В). Отношение периода Т к длительности Ти (скважность) равна трем. Напряжение питания датчика соответствует напряжению бортовой сети и находится в пределах 8…14 В.

Для преобразования управляющих импульсов бесконтактного датчика в импульсы тока в первичной обмотке катушки зажигания применяются коммутаторы. Коммутатор преобразует управляющие импульсы датчика в импульсы тока в первичной обмотке катушки зажигания. Коммутатор соединен с генератором импульсов (бесконтактным датчиком) тремя проводниками. Коммутатор управляет зажиганием в зависимости от частоты вращения валика датчика-распределителя, напряжения аккумулятора, полного сопротивления катушки зажигания и при любых режимах работы двигателя выдает импульсы напряжения постоянной величины. Во время прохождения положительного импульса (напряжение Umax ) от бесконтактного датчика происходит постепенное ( в течении 4…8 мс) нарастание тока в первичной обмотке катушки зажигания до максимальной величины В равной 8…9 А. В момент, когда напряжение на выходе датчика падает до Umin , выходной транзистор коммутатора закрывается и ток через первичную обмотку катушки зажигания резко прерывается. В результате во вторичной обмотке индуцируется импульс высокого напряжения.

Отдельно элементы прерывателя-распределителя с датчиком Холла показаны на рисунке. Пластинка и остальные составляющие датчика Холла устанавливается внутри пластмассового корпуса, залитого смолой. Датчик Холла неразборный и не подлежит ремонту. Для соединения с коммутатором датчик Холла имеет 3 вывода.

Рис. Элементы прерывателя-распределителя с датчиком Холла:
1 – ротор: 2 – шторка; 3 – держатель датчика Холла; 4 – постоянный магнит и датчик Холла; 5 – воздушный зазор

Датчик-распределитель выдает управляющие импульсы низкого напряжения и распределяет импульсы высокого напряжения по свечам зажигания. Он имеет центробежный и вакуумный регуляторы опережения зажигания. Бескон­тактный датчик в сборе с опорной пластиной имеет возможность поворачиваться в зависимости от разряжения, подводимого к вакуумному регулятору.

Катушка зажигания, адаптированная к данной системе зажигания, установлена рядом с коммутатором. Она преобразует прерывистый ток низкого напряжения (12 В) в ток высокого напряжения (20…25 кВ) необходимый для пробоя воздушного зазора между электродами свечей зажигания. Катушка имеет в верхней части отверстие, закрытое пробкой диаметром 5.5 мм для защиты катушки от избыточного внутреннего давления. Пробка выталкивается из отверстия при росте давления вследствие повышения температуры из-за короткого замыкания.

Генератор импульсов на основе эффекта Холла

Принцип эффекта Холла обсуждался в гл. 2. Системы зажигания на основе эффект Холла стали очень популярны среди многих изготовителей. На рис. 8.9 показан типичный распределитель зажигания с датчиком Холла. По мере вращения центрального вала распределителя, лопасти, прикрепленные к ротору, поочередно закрывают и открывают чип датчика Холла. Число лопастей соответствует числу цилиндров. В системах с постоянной фазой акт ваий и она определяется шириной лопастей. Лопасти периодически прерывают магнитное поле. В результате устройство создает выходной сигнал почти прямоугольной формы, который легко использовать для переключения других электронных схем. Три вы­ вода распределителя отмечены символами «+, 0, — Выводы

питания берется от блока управления зажиганием и в некоторых системах стабилизировано приблизительно на уровне 10 В, что предотвращает изменение выходного сигнала датчика при запуске двигателя. Распределители на основе эффекта Холла очень распространены из-за высокой точности и долговременной надежности. Они подходят для использования и в системах 2 постоянной фазой активации, и в системах с постоянной энергией. Действие генератора импульсов на основе эффекта Холла можно легко проверить вольтметром постоянного тока или логическим пробником. Отметим, что испытания ни в косм случае нельзя выполнять омметром, поскольку напряжение от омметра может повредить чип датчика.

Читать еще:  Сузуки Летс 2 - история ремонта и переделок

Индуктивный генератор импульсов

Индуктивные датчики импульсов для создания сигнала используют принцип индукции. Типичный вид сигнала показан на рис. 8.11. Существует много типов таких генераторов, но все работают с использованием катушки проводов и постоянно­ го магнита. Распределитель, показанный на рис. 8.12, имеет катушку провода, намотанного на датчике. По мере вращения редуктора’ магнитный поток изменяется за счет его выступов. Число выступов или зубцов на редукторе соответствует числу цилиндров двигателя. Зазор между редуктором и датчиком влияет на выходной сигнал, поэтому изготовители указывают рекомендованную величину зазора.

Другие генераторы импульсов

Ранее были известны системы «контакты, усиленные транзистором (transistor assisted contacts — ТАС), где контакты прерывателя были использованы в качестве механизма запуска других схем. Совершенно иной технический прием, который также широко использовался, — оптический генератор импульсов. Он включает в себя сфокусированный пучок света, испускаемого светодиодом в направлении фототранзистора. Пучок света прерывается вращающейся крыльчаткой, в результате выходной сигнал имеет вид меандра. Наиболее популярна эта система при замене обычных контактных прерывателей. На рис, 8.13 показан принцип действия оптического генератора импульсов. Отмстим, что луч сфокусирован, чтобы гарантировать точный момент переключения.

Управление углом активации (открытый контур) На рис. 8.14 показана блок-схема транзисторного модуля зажигания. Для изучения работы системы выбран генератор импульсов индуктивного типа. Чтобы понять, как управляют фазой активации, необходимо рассмотреть схему целиком. Первая часть схемы — стабилизатор напряжения, необходимый для обеспечения известных напряжений для заряда и разряда конденсаторов и предотвращения повреждений каких-либо компонентов. Эта часть схемы состоит из стабилитрона ZDX и резистора Я,. Диод £>; служит для зашить* от случай­ ной подачи напряжения обратной полярности. Чтобы блок запуска функционировал правильно, переменное напряжение, поступающее от генератора импульсов индуктивного типа, должно быть преобразовано в импульсы прямоугольной формы. Формирование выполняется электронной пороговой схемой, известной как триггер Шмидта. Эта схема формирует импульсы в блоке запуска. Схема формирования импульсов начинается с кремниевого диода Dy При данной полярности его включения базы транзистор» Т, достигают только импульсы положительной полярности от датчика. Импульсы отрицательной полярности не используются. Генератор импульсов индуктивного типа нагружен только на положительной полуволне управляющего переменного напряжения, поэтому из-за отбора энергии амплитуда её меньше, чем амплитуда отрицательной полуволны. Как только переменное управляющее напряжение. возрастающее от отрицательного значения, превысит порог срабатывания триггера Шмид­ та. транзистор 7, открывается и начинает проводить ток, а транзистор Т, закрывается. На выходе триггера формируется импульс с амплитудой, равной напряжению стабилизации стабилитрона- Это состояние переключения поддерживается до тех пор, пока переменное управляющее напряжение, теперь снижающееся от положительных значений, не упадет ниже порога срабатывания. Теперь транзистор Ту закрывается. База Т становится положительной, и Т2 открывается током, текущим через Ry Эк» изменение — (вкл. Т,)/(выкл. 7^) или (выкл. 7,)/ (вкл. Тг) — характерно для триггера и повторяется непрерывно, пока существует входной сигнал. Диоды Ov ), и я, введены для обеспечения температур­ ной компенсации режима транзисторов триггера.

Энергия, накопленная в катушке зажигания, может быть использована благодаря секции активации в блоке запуска. Период активации начинается, когда открывается транзистор Т.. Сформированный км прямоугольный импульс тока открывает транзистор ТА, а он, в свою очередь, включает выходной каскад. Ток транзистора ТА приводит в действие мощный выходной ключ (пара Дарлингтона). В этой схеме Дарлингтона ток, текущий к балу транзистора Гч, усиливается и подастся в базу транзистора Tt. Далее благодаря ключу Г(, через катушку зажигания может течь мощный ток -первичной цепи. Первичная обмотка подключена к коллектору этого транзистора. Пара Дарлингтона функционирует как один транзистор и часто описывается как каскад усиления мощности. Для реализации переменного времени активации применяется время задающее схема, использующая емкостные и резистивные элементы. В результате можно получить достаточно высокое напряжение искры в свече зажигания при любом режиме эксплуатации двигателя. Эта схема поочередно заряжает и разряжает конденсаторы через резисторы. Она представляет схему управления активацией с открытым контуром, поскольку комбинация резисторов и конденсаторов обеспечивает фиксированную зависимость времени активации как функцию частоты вращения двигателя. Конденсатор и резисторы /?„ и Rv образуют резистивно-емкостную схему. Когда транзистор Т2 закроется, конденсатор Cs будет заряжаться через Д, и базоэмиттерный переход транзистора Ту .При низкой чистоте вращения двигателя у конденсатора будет время, чтобы зарядиться практически до напряжения стабилизации стабилитрона ZDV В течение этого времени транзистор Тл открыт, и через транзисторы Т4, Т> и Ть включено питание катушки зажигания. В момент зажигания ключ Тг .открывается, и теперь конденсатор С, может раз­ рядиться через и Тг Транзистор Т> остается закрытым все время, пока разряжается Сг Время разряда (которое зависит от того, до какого напряжения заряжен Cs), отодвигает начало следующего периода активации. Наконец, конденсатор С5 разрядится и начнет новый цикл заряда в противоположном направлении через /. и Г2. Когда напряжение на базе 7 достигнет приблизительно 0,7 В, он снова откроется и останется открытым до тех пор, пока Т2 не откроется вновь. По мере увеличения оборотов двигателя доступное для конденсатора С, время заряда уменьшается. Это означает, что он получит При заряде меньший уровень напряжения и, следовательно, следующий разряд произойдет раньше. Вследствие этого ключ Г, также откроется раньше и, следовательно, результатом будет более длительный период активации. Компоненты, не упомянутые в этом объяснении, — ото элементы защиты против противо-э.д.с. катушки зажигания ( ZD ^ D) и цепь, предотвращающая слишком малые значения периода активации (ZD2 и С4). Блок запуска импульсных генераторов с эффектом Холла функционирует подобно вышеприведенному описанию, но для него не требуется триггер Шмидта. Гибридные блоки запуска зажигания значительно меньше по размерам, чем тс, которые используют дискретные компоненты.

На рис. 8.15 показан вид такого типичного блока.

Ограничение тока и замкнутый контур управления фазой активации

Ограничение тока первичной цепи зажигания гарантирует, что система не будет повреждена чрезмерным первичным током и при этом работает как часть системы с постоянной энергией. Первичный ток может расти до заданного максимума так быстро, насколько это, возможно, затем удерживается на этом значении. Значение этого тока рассчитывается, а затем фиксируется в конструкции модуля управления. Поскольку при объединении контроля тока первичной обмотки с управлением фазой активации фактическое значение тока подается обратно на каскады управления, этот способ известен как управление с замкнутым контуром. В этой схеме используется высокоточный резистор с очень низким сопротивлением. Резистор соединен последовательно с мощным транзистором и катушкой зажигания. Пороговая схема, реагирующая на пропорциональное току падение напряжения на этом резисторе, при определенном напряжении заставит мощный каскад зафиксировать ток. На рис. 8.I6 показана блок-схема управления фазой активации по принципу замкнутого контура.

На тот случай, когда зажигание включено, но двигатель не работает, предусмотрена блокировка тока через катушку зажигания. Во многих случаях это достигается простой схемой таймера, которая будет блокировать выходной каскад приблизительно через одну секунду.

Системы зажигания с датчиком Холла

Система зажигания

Система зажигания предназначена для своевременного воспламенения рабочей смеси искровым разрядом. Их можно подразделить на динамические, статические и частично статические.

Динамические системы подразделяются на:

· бесконтактная с датчиком Холла;

· бесконтактная с индуктивным датчиком.

Статические системы характерны отсутствием подвижных частей для работы системы зажигания, частично статические имеют распределитель, но не имеют прерывателя.

Динамические транзисторные системы

Контактно-транзисторная система зажигания

Бесконтактно-транзисторные системы зажигания (БТСЗ) начали применять с 80-х годов. Если в контактной системе зажигания (КСЗ) прерыватель непосред­ственно размыкает первичную цепь, в контактно-транзисторной (КТСЗ) — цепь управления, то в БТСЗ и управление становится бесконтактным. В этих системах транзисторный коммутатор, прерывающий цепь первичной обмотки катушки за­жигания, срабатывает под воздействием электрического импульса, создаваемого бесконтактным датчиком. Все виды датчиков, используемых в БТСЗ делят на па­раметрические и генераторные.

В параметрических датчиках изменя­ются те или иные параметры управляющей (базовой) цепи (сопротивление, индуктив­ность, емкость), в связи с чем изменяется сила тока базы транзистора.

Генераторные датчики (магнитоэлек­трические, фотоэлектрические и др.) явля­ются источниками питания управляющей цепи. Наибольшее распространение полу­чили магнитоэлектрические датчики – ин­дукционные и датчики Холла.

Читать еще:  Авто из золотого теленка. Кто он адам козлевич

Индукционный датчик представляет собой однофазный генератор переменного тока с ротором на постоянных магнитах. Основным недостатком индукционных датчиков является средний большой потребляемый ток (6…8 А) и зависимость силы тока от частоты вращения коленчатого вала двигателя.

Устройство коммутатора бесконтактных систем достаточно сложное (в нем есть микросхема, силовой транзистор, а также несколько резисто­ров, стабилитроны и конденсаторы). Энергия искры в три-четыре раза больше, чем в КСЗ. Система небезопасна и требует осторожности.

Во всех системах зажигания и других приборах системы зажигания широко применяются полупроводниковые триоды (транзисторы) представляющие собой пластинку кремния или германия и двух наплавленных капель, образующих два перехода.

Каждая из трех областей триода имеет свое название: нижняя область, испускающая электроны – носители зарядов, называется э м и т т е р о м (рис. 6. 1), верхняя область, собирающая носители зарядов, – коллектором, а средняя область – основанием, или базой.

К этим трем областям триода делают самостоятельные выводы. Средний вывод соединяют с базой, один – с эмиттером, а другой – с коллектором.

Если транзистор включить в цепь какого-либо источника, соеди­нив вывод эмиттера с плюсовым зажимом, а вывод коллектора с ми­нусовым, то тока в цепи не будет, так как один из переходов будет закрыт.

Но если транзистор включить в цепь так, чтобы одна из областей была общей, а между другими создать разность потенциалов, то по­тенциальный барьер открывается, сопротивление транзистора падает до нуля и на выходном зажиме коллектора получается увеличение силы тока.

Рис. 6.1. Схема германиевого транзистора:

а – схема включения в цепь; б – условное обозначение; в – внешний вид

Транзисторы применяются во всех системах зажигания и на рис. 6.2 показана элементарная схема контактно-транзисторной системы зажигания.

При включенном зажигании, ког­да контакты прерывателя разомк­нуты, движения электронов от «ми­нуса» к «плюсу» аккумуляторной батареи нет, т.е. тока в схеме зажигания не будет, так как тран­зистор закрыт в связи с большим переходным сопротивлением меж­ду эмиттером и коллектором тран­зистора.

В момент замыкания контак­тов прерывателя в цепи управле­ния транзистора через базу и коллектор будет проходить ток 0,3…0,8 А в зависимости от час­тоты вращения кулачка прерыва­теля. В связи с прохождением тока управления происходит рез­кое снижение сопротивления пе­рехода «эмиттер-коллектор» тран­зистора до нескольких долей Ома и транзистор открывается, вклю­чая цепь первичной обмотки ка­тушки зажигания.

Сила тока в этой цепи зави­сит от напряжения источника (ак­кумуляторной батареи), величин сопротивления и индуктивности первичной обмотки и времени замкнутого состояния контактов прерывателя. С увеличением частоты вращения коленчатого вала двигателя сила тока в цепи низкого напряжения снижается с 7 до 3 А.

При размыкании контактов прерывателя ток управления прерывается, что вызывает резкое повышение сопротивления перехода силового уча­стка транзистора «эмиттер-коллектор» до нескольких сотен Ом и транзи­стор запирается, выключая цепь тока первичной обмотки катушки зажи­гания.

Так как через контакты прерывателя идет только управляющий ток (контакты превратились в датчик управляющих импульсов), энергию искрообразования увеличивают применением специальных кату­шек зажигания с увеличенным числом витков вторичной обмотки и уменьшенным числом витков первичной.

При значительном понижении сопротивления первичной обмотки катуш­ки зажигания в коммутатор вводят специальную цепь, которая спустя 1,5 с после остановки двигателя (валика распределителя) разрывает цепь пита­ния катушки зажигания. Этим ограничивается чрезмерный нагрев катушки зажигания с низким сопротивлением первичной обмотки.

Рис. 6.2. Принципиальная схема контакт­но-транзисторной системы зажигания:

1 – свечи зажигания; 2 – распределитель зажигания; 3 – коммутатор; 4 – катушка зажигания. Электроды транзистора: силовые К – коллектор, Э – эмиттер, управляющий Б – база, R – резистор

Системы зажигания с датчиком Холла.

Магнитоэлектрический датчик Холла получил свое название по имени Э.Холла американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

Элемент Холла представляет собой тонкую пластинку, выполненную из полупроводникового материала (кремний, германий), с четырьмя электродами. Если через такую пластинку проходит ток I (рис. 6.3) и на нее одновременно действует магнитное поле, вектор магнитной индукции В которого перпендикулярен плоскости пластинки, то на параллельных направлению тока гранях возникает э.д.с. Холла, которое определяется по следующему выражению:

кх – постоянная Холла, зависящая от материала пластинки; d – толщина пластинки

Рис. 6.3. Принцип работы элемента Холла:

1 – магнит; 2 – пластинка из полупроводникового материала

Через пластинку пропускается ток примерно 30мА, тогда как напряжение Холла составляет 2 мВ, увеличиваясь с ростом температуры. Пластинка обычно представляет одно целое с интегральной схемой, осуществляемой усиление и формирование сигнала.

Если между магнитом и полу­проводником поместить перемещающийся экран с прорезями, получим импульсный генератор Холла.

Схема прерывателя-распределителя с датчиком Холла представлена на рис. 6.4 и рис. 6.5

Рис. 6.4. Принцип работы датчика Холла:

1 – постоянный магнит; 2 – ротор; 3 – элемент Холла; 4 – операционный усилитель; 5 – формирователь импульсов; 6 – выходной каскад; 7 – блок стабилизации

Магнитное поле создается постоянным магнитом 1, а прерывание магнитного поля осуществляется ротором (экраном) 2 с окнами, укрепленным на валике распределителя. При прохождении окна ротора около постоянного магнита силовые линии его магнитного поля пронизывают поверхность элемента Холла и на его выходе возникает ЭДС. Если воздушный зазор между магнитом и элементом Холла перекрывается шторкой, магнитное поле замыкается на шторку экрана и не попадает на элемент Холла (рис. 6.5).

Рис.6.5. Схема прерывания магнитного потока:

1 – датчик Холла; 2 – держатель датчика; 3 – воздушный зазор; 4 – магнитный поток; 5 – ротор

Количество шторок и окон экрана соответствует количеству цилиндров двигателя. Ширина шторки экрана соответствует углу, при котором выходной транзистор коммутатора пропускает ток через первичную обмотку зажигания.

Учитывая небольшое напряжение, вырабатываемое элементом Холла, оно обрабатывается и усиливается.

Операционный усилитель 4 (рис.6.4) усиливает сигнал датчика и через формирователь импульсов 5 подает сигнал на базу выходного транзистора 6 и открывает его. Для исключения влияния на выходной сигнал датчика колебаний напряжения сети и температуры в схеме датчика имеется блок стабилизации 7.

При нахождении шторки экрана в щели воздушного зазора, величина магнитного потока резко падает, вследствие замыкании магнитного потока на шторку (рис. 6.6)

Рис. 6.6. Импульсы датчика Холла:

В – магнитная индукция; Uн – напряжение, вырабатываемое элементом Холла; Ug – напряжение, вырабатываемое датчиком Холла; I – ток первичной обмотки катушки зажигания; tz – момент зажигания электрической искры; а – изменение магнитной индукции; б – изменение напряжения, вырабатываемого элементом Холла; в – изменение напряжения, вырабатываемого датчиком Холла; г – изменение силы тока первичной катушки зажигания.

Напряжение, вырабатываемое элементом Холла Uн, поступает на операционный усилитель, где происходит усиление сигнала. После этого ток поступает на формирователь импульсов и там происходит переработка из аналового сигнала в цифровой. Затем полученный цифровой сигнал поступает на выходной каскад и окончательно усиливается до величины напряжения Ug, достаточного для работы транзисторного коммутатора. При этом напряжение Ug за счет инверсии выходного каскада вырабатывается в момент отсутствия напряжения Uн с входа элемента Холла, т.е. в момент перекрытия шторкой экрана воздушного зазора, что соответствует напряжению Uн ниже 0,4 В. В таком положении экрана транзистор выходного каскада Т0 находится в открытом состоянии, при этом от коммутатора через транзистор Т0 проходит ток и при этом база транзистора Т1 соединяется с массой (рис.6.7).

Рис. 6.7. Электрическая схема коммутатора и датчика Холла:

1 – датчик Холла; 1а – выходной сигнал; 2 – коммутатор; 3 – замок зажигания; 4 – дополнительный резистор; 5 – шунтирование дополнительного резистора; 6 – катушка зажигания

Учитывая, что проводимость транзистора Т1 n-p-n, отсутствие положительного потенциала этого транзистора приводит к его закрытию. В результате этого прекращается подача положительного потенциала на базу В через резистор R4 и коллекторно-эмитерный переход транзистора Т1. При этом ток не проходит через резистор R7 и база В включения транзисторов Т2/Т3 замыкается на массу. Учитывая проводимость этих транзисторов n-p-n, отсутствие положительного заряда на базе В, транзисторы закрываются и ток в первичную обмотку катушки зажигания не поступает. При выходе экрана из воздушного зазора напряжение с элемента Холла достигает 0,4В и через первичную обмотку катушки зажигания начинает протекать ток.

В момент попадания зуба ротора в зазор датчика на выходе датчика создается напряжение Umax примерно на 3 В меньше напряжения питания. Если через зазор датчика проходит прорезь ротора, напряжение на выходе датчика Umin близко к нулю (не более 0,4 В). Отношение периода Т к длительности Ти (скважность) равна трем. Напряжение питания датчика соответствует напряжению бортовой сети и находится в пределах 8…14 В.

Читать еще:  Маленькое авто для женщин. Какую машину купить девушке на первое время после обучения в автошколе

Для преобразования управляющих импульсов бесконтактного датчика в импульсы тока в первичной обмотке катушки зажигания применяются коммутаторы. Коммутатор преобразует управляющие импульсы датчика в импульсы тока в первичной обмотке катушки зажигания. Коммутатор соединен с генератором импульсов (бесконтактным датчиком) тремя проводниками. Коммутатор управляет зажиганием в зависимости от частоты вращения валика датчика-распределителя, напряжения аккумулятора, полного сопротивления катушки зажигания и при любых режимах работы двигателя выдает импульсы напряжения постоянной величины. Во время прохождения положительного импульса (напряжение Umax ) от бесконтактного датчика происходит постепенное ( в течении 4…8 мс) нарастание тока в первичной обмотке катушки зажигания до максимальной величины В равной 8…9 А. В момент, когда напряжение на выходе датчика падает до Umin , выходной транзистор коммутатора закрывается и ток через первичную обмотку катушки зажигания резко прерывается. В результате во вторичной обмотке индуцируется импульс высокого напряжения.

Отдельно элементы прерывателя-распределителя с датчиком Холла показаны на рис. 6.8. Пластинка и остальные составляющие датчика Холла устанавливается внутри пластмассового корпуса, залитого смолой. Датчик Холла неразборный и не подлежит ремонту. Для соединения с коммутатором датчик Холла имеет 3 вывода.

Рис.6.8. Элементы прерывателя-распределителя с датчиком Холла:

1 – ротор: 2 – шторка; 3 – держатель датчика Холла; 4 – постоянный магнит и датчик Холла; 5 – воздушный зазор

Датчик-распределитель выдает управляющие импульсы низкого напряже­ния и распределяет импульсы высокого напряжения по свечам зажигания. Он имеет центробежный и вакуумный регуляторы опережения зажигания. Бескон­тактный датчик в сборе с опорной пластиной имеет возможность поворачиваться в зависимости от разряжения, подводимого к вакуумному регулятору.

Катушка зажигания, адаптированная к данной системе зажигания, установ­лена рядом с коммутатором. Она преобразует прерывистый ток низкого напряже­ния (12 В) в ток высокого напряжения (20. 25 кВ) необходимый для пробоя воз­душного зазора между электродами свечей зажигания. Катушка имеет в верхней части отверстие, закрытое пробкой диаметром 5.5 мм для защиты катушки от избыточного внутреннего давления. Пробка выталкивается из отверстия при росте давления вследствие повышения температуры из-за короткого замыкания.

Дата добавления: 2018-02-28 ; просмотров: 831 ;

Как проверить датчик Холла в автомобиле

Дата публикации: 25 ноября 2018 .
Категория: Автотехника.

Любой современный автомобиль «напичкан» самыми различными датчиками. Сигналы от них поступают на электронный блок управления (ЭБУ), бортовой компьютер или непосредственно на приборную панель. В данной статье речь пойдет о датчике Холла, его использовании в автомобиле и способах самостоятельной проверки работоспособности этого сенсора.

Принцип работы

Принцип эффекта Холла (он получил свое название в честь ученого, впервые обнаружившего его еще во второй половине XVIII века):

  • Если к полупроводниковой прямоугольной пластинке (в точках A и B) подключить источник постоянного напряжения, то электрический ток, протекающий через нее, будет представлять собой прямолинейное встречное движение отрицательно и положительно заряженных частиц (то есть, электронов и «дырок»).
  • Подсоединенный к точкам C и D вольтметр показывает «0» (это значит, что напряжение отсутствует).

  • Если к пластине подносят постоянный магнит, то создаваемое им поле отклоняет движение заряженных частиц к внешним граням полупроводникового прямоугольника. В результате этого между точками C и D возникает разность потенциалов, то есть, наблюдается наличие напряжения (Vh). Что и фиксируется вольтметром.

Многие датчики в автомобилях работают именно на основе вышеописанного эффекта Холла. Естественно, напряжение на полупроводниковой пластинке минимально и его недостаточно для непосредственной подачи на бортовой компьютер. Современные технологии позволили создать на основе эффекта чип, состоящий из нескольких функциональных устройств:

  • непосредственно полупроводниковой пластинки Холла, которую изготавливают из арсенида галлия (GaAs), антимонида индия (InSb) или арсенида индия (InAs);
  • усилителя напряжения;
  • триггера Шмидта;
  • регулятора напряжения (для предотвращения выхода из строя при резких скачках напряжения бортовой сети);
  • выходного коммутирующего транзистора.

В результате при изменении интенсивности магнитного поля, воздействующего на полупроводниковую пластинку, на выходе устройства получают «понятные» бортовому компьютеру нули и единицы.

Технологически современные сенсоры Холла представляют собой микросхему с тремя выводами для:

  • подключения напряжения питания;
  • заземления;
  • снятия преобразованного датчиком сигнала.

Применение в автомобиле

В современных автомобилях датчики Холла находят довольно широкое применение. Их используют:

  • В распределителях (или как принято называть в народе трамблерах) бесконтактных систем зажигания бензиновых двигателей.
  • Для контроля оборотов двигателя и вывода показаний непосредственно на тахометр приборной доски.
  • В дизельных моторах в качестве датчиков определения положения коленчатого и распределительного вала, для того, чтобы бортовой компьютер «смог» определить положение первого цилиндра и синхронизировать работу форсунок. Более подробно об это рассказано в представленном ниже видео:

  • В системах АБС.
  • Для синхронизации работы отдельных узлов автоматических коробок передач.

Датчик Холла в системе зажигания

В современных бесконтактных системах зажигания вместо механического размыкателя применяют датчик Холла. Сам сенсор установлен на корпусе трамблера и имеет специальную прорезь, с одной стороны которой установлен постоянный магнит, с другой – микросхема с чувствительным элементом. На оси прерывателя закреплена металлическая коронка с прямоугольными зубцами и прорезями (в соответствии с количеством цилиндров двигателя). Сам принцип работы достаточно прост. При вращении ротора распределителя металлические зубцы коронки проходят через зазор датчика Холла.

  • Когда щель между постоянным магнитом и чипом свободна (это происходит в момент прохождения прорези вращающейся коронки через зазор датчика), на выходе сенсора напряжение отсутствует (либо оно минимально). ЭБУ «воспринимает» такой сигнал как логический ноль.
  • И наоборот, когда металлическая пластина входит в зазор датчика и перекрывает магнитный поток, на выходе устройства появляется значительное напряжение, которое поступает на ЭБУ. Блок «включает» в работу высоковольтную катушку и в нужном цилиндре происходит воспламенение воздушно-топливной смеси.

Для информации! Существуют датчики (в зависимости от марки автомобиля и прошивки его «мозгов»), алгоритм работы которых выглядит с точностью «до наоборот» (по сравнению с вышеописанным).

Как проверить самостоятельно

Вполне стандартная ситуация: двигатель плохо заводится, работает нестабильно или периодически глохнет. Описанные симптомы вполне могут быть вызваны неисправностью датчика Холла, установленного в распределителе зажигания. Как проверить его работоспособность? Наиболее правильно (с технической точки зрения) осуществлять это с помощью осциллографа. Однако, такой дорогостоящий измерительный прибор редко встречается «в хозяйстве» автолюбителя. А, вот стандартный мультиметр есть, практически, у всех. Именно с помощью него можно довольно легко проверить работоспособность сенсора. Для этого сначала собираем схему:

Далее все просто:

  • Включаем блок питания (или просто подсоединяем провода к снятому с автомобиля аккумулятору): при этом показания вольтметра должны быть близкими к нулю (как правило, не более 0,3÷0,4 В).
  • Вставляем в щель датчика плоский металлический предмет (подойдет пилка по металлу или нож). Если показания прибора резко увеличиваются (величина напряжения зависит от марки тестируемого сенсора), то датчик Холла исправен. В противном же случае можно сделать заключение, что перебои в работе двигателя происходили именно из-за него, и, следовательно, он подлежит замене на новый.

Если у вас нет мультиметра, то вместо него можно использовать светодиод (рассчитанный на прямое напряжение около 12 В и стоимостью порядка 10÷12 рублей), чтобы проверить датчик по аналогичному алгоритму.

На заметку! В качестве источника питания можно использовать регулируемый лабораторный блок или, в крайнем случае, батарейку типа «Крона» напряжением 9 В.

Проверка датчика положения коленчатого и распределительного вала

Датчики положения распределительного и коленчатого вала, основанные на эффекте Холла работают несколько иначе (по сравнению с сенсорами, которые устанавливают в распределители бесконтактных систем зажигания).

  • На вал установлен специальный зубчатый ферромагнитный диск. Причем, в строго определенном месте один или два зубца отсутствуют.
  • В непосредственной близости от торца диска закреплен датчик Холла (с минимальным зазором).
  • При вращении вала напротив сенсора последовательно оказывается либо выступающий зубец диска, либо прорезь. Вследствие чего магнитное поле, действующее на чувствительный элемент, постоянно меняется, и на выходе датчика формируются импульсы напряжения одинаковой длительности и скважности.
  • Когда мимо чувствительного элемента сенсора проходит сектор диска с отсутствующим зубцом, то устройство выдает импульс большей длительности. Этот момент и является «отправной точкой» определения положения вала для ЭБУ.

Проверку сенсора положения (или как его еще называют датчика фаз) можно также осуществить самостоятельно. Подробности вы узнаете из представленного ниже видео:

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector