0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разная маркировка у 2х внешне одинаковых коммутоаторов

Алло, коммутатор?

АЛЛО, КОММУТАТОР?

КОМПАНИИ И РЫНКИ

ОНИ УПРАВЛЯЮТ ЗАЖИГАНИЕМ «САМАРЫ».

ТЕКСТ / МИХАИЛ КОЛОДОЧКИН

Со времени выхода предыдущей статьи о коммутаторах для «Самары» (ЗР, 1998, № 11, с. 78) прошло два с лишним года. Напомним, особого рвения к работе те конкурсанты не проявили — из 11 участников до финиша добрались восемь. Что изменилось с тех пор?

Прежде всего, коммутаторы заметно похудели — одиночные радиоэлементы постепенно уступают место интегральным сборкам. С упаковкой дела похуже — половина изделий по-прежнему продается в обнаженном виде. Пора бы объявить им бойкот, но любопытство все-таки сильнее. Приобретаем шесть коммутаторов — четыре «наших» и два импортных. Внешне изделия похожи — лишь тольяттинский «Пульсар» состоит из двух частей, поскольку содержит октан-корректор. Но сегодня нас интересуют только сами коммутаторы — токи потребления, разрыва и разряда, время разряда и т. п. Покупки поочередно устанавливаем на лабораторный стенд и проверяем при разных напряжениях питания и нескольких частотах искрообразования (см. табл.).

Прежде чем осмысливать результаты, вспомним азы теории. Коммутаторы «Самары» умеют нормировать время накопления энергии в катушке зажигания — иными словами, при подаче сигнала с датчика Холла ток через катушку потечет не сразу, а с нужным запаздыванием. Смысл простой — зачем бесполезно расходовать электроэнергию и греть выходные транзисторы? Кстати, при желании можно оценить коэффициент полезного действия системы — чем выше отношение тока разрыва к току потребления, тем лучше.

А теперь смотрим в таблицу. Она обнадеживает, поскольку результаты шести участников практически одинаковы. «Прокололся» только № 5 — при снижении питания до 6 В «немец» (кстати, не имевший упаковки!) почему-то отказался пробивать стандартный искровой промежуток в 7 мм. Остальные коммутаторы во всех режимах вели себя пристойно, а потому вполне могут ездить под «самарскими» капотами. Тому способствует и цена — примерно по 5–6 у. е.

А ОНИ В ОДИНОЧКУ НЕ РАБОТАЮТ

Что касается встречающихся в продаже двухканальных коммутаторов 84.3734 (фото 7) и 6420.3734 (фото 8), то им на обычной «Самаре» делать нечего. Подобные изделия предназначены для выпускавшихся некогда автомобилей с микропроцессорной системой зажигания и умеют работать только «на пару» с контроллерами типа МС-2713-01 и им подобными.

Был период, когда по каким-то неведомым причинам они стоили чуть ли не дешевле обыкновенных, а потому их приобретение считалось экономически оправданным, но сегодня это не имеет смысла. Нестандартные способы подключения таких коммутаторов подвластны только опытным радиолюбителям, желающим перевести свою «Самару» на зажигание со статическим распределением энергии — в этом случае оба канала будут использованы по назначению. Что касается рядовых «самарцев», желающих ограничить свое общение с электрикой простым втыканием вилки в розетку, то им проще не мучиться и купить обычный коммутатор.

Справочно о ВОЛС

Основные данные по ВОЛС для проектирования систем телекоммуникаций

Оптическое волокно позволяет организовывать связь без регенераторов (повторителей сигнала) до 120 км у одномодовых и до 5 км у многомодовых кабелей.

В качестве сигналов в оптических кабелях используются не электрические импульсы, а моды (световые потоки). Стенки центральной жилы – диэлектрики и имеют отражающие свойства стекла, благодаря которым световые потоки распространяются внутри кабеля.

Одномодовые и многомодовые волокна

Принято разделять оптоволоконные волокна (кабеля и пачкорды) на два типа:

• одномодовые (Single Mode), сокращённо: SM;

• многомодовые (Multi Mode), сокращённо: MM.

При этом оба типа имеют свои преимущества и недостатки, а значит каждый из них может быть использован для реализации различных целей.

Одномодовые оптические волокна (SM)

8/125, 9/125, 10/125 – это маркировка одномодовых оптоволоконных пачкордов. Первая цифра в маркировке – диаметр центральной жилы, а вторая – это диаметр оболочки. Стоит отметить, что диметры ВОЛС (волоконно-оптической линии передач) измеряются в мкм (микрометрах).

В одномодовом кабеле используют сфокусированный узконаправленный лазерный луч с диапазоном световых волн 1,310-1,550 мкм (1310-1550 нм).

Благодаря тому, что диаметр центральной жилы достаточно мал, световые моды двигаются в ней практически параллельно центральной оси. Поэтому в волокне практически отсутствуют искажения сигнала, а малое затухание позволяет передавать оптический импульс на расстояния до 120 км без регенерации на скоростях до 100 Гбит/с и выше.

Различают одномодовые оптические волокна:

— с несмещённой дисперсией (стандартное, SMF);

— со смещённой дисперсией (DSF);

— и с ненулевой смещённое дисперсией (NZDSF).

Многомодовые оптические волокна (MM)

Многомодовое волокно со ступенчатым коэффициентом

Многомодовое волокно с градиентным коэффициентом

Многомодовые волокна имеют маркировку, например, 50/125 или 62,5/125. Это говорит о том, что диаметр центральной жилы может быть 50 или 62,5 мкм, а диметр оболочки такой же, как и у одномодового типа – 125 мкм.

Читать еще:  Игры играть супер джипов. Самые красивые внедорожники и кроссоверы в мире

В многомодовом кабеле используют рассеянные лучи от светодиодов или лазера с диапазоном световых волн 0,85 мкм — 1,310 мкм (850-1310 нм).

Из-за того, что диаметр центральной жилы многомодового патч-корда больше, чем у одномодового, количество путей для распространения световых модов увеличивается. Сразу несколько световых потоков двигаются по различным траекториям, отражаясь от зеркальной поверхности центральной жилы.

Однако, многомодовые волокна со ступенчатым коэффициентом преломления имеет достаточно высокую межмодовую дисперсию (постепенное расширение оптического луча в результате отражений), что ограничивает расстояние передачи сигнала до 1 км и скорость передачи до 100 — 155 Мбит/с. Рабочая длина волны, как правило, 850 нм.

Многомодовые волокна с градиентным коэффициентом преломления характеризуются меньшей межмодовой дисперсией вследствие плавного изменения показателя преломления в волокне. Это позволяет передавать оптический сигнал на расстояния до 5 км со скоростью до 155 Мбит/с. Рабочая длина волны — 850 нм и 1310 нм.

Отличия одномодовых и многомодовых оптических волокон

В одномодовом и многомодовом оптоволокне достаточно важную роль играет затухание сигналов. Этим и обусловлено малое рабочее расстояние многомодовых волокон (1-5 км). Несмотря на то, что казалось бы, по многомодовому кабелю движется больше световых потоков, пропускная способность таких кабелей и патч-кордов ниже, чем у одномодовых.

Узконаправленный (одномодовый) луч в одномодовых волокнах затухает в несколько раз меньше, чем рассеянный (многомодовый) в многомодовых волокнах, что позволяет увеличивать расстояние (до 120 км) и скорость передаваемого сигнала.

Оптические коннекторы

Оптический разъем, или коннектор (Optical Connector) – это недорогой и эффективный способ коммутации оптоволоконных кабелей. Он обеспечивает надежное соединение и целостность передаваемых пакетов.

Сегодня на рынке присутствует большое количество различных типов коннекторов для ВОЛС. Все они имеют различные параметры и назначение. Стыковку двух одинаковых либо разных коннекторов производят при помощи оптического адаптера.

Различные типы оптических коннекторов имеют разную форму и технологию соединения. Также при производстве таких разъемов могут быть использованы различные материалы, будь то металлы или полимеры.

Основные типы оптических коннекторов (разъёмов)

Коннекторы SC

SC-наиболее популярные оптические разъёмы.

Корпус разъёма SC выполнен из пластика, в поперечном сечении — прямоугольный. Подключение и отключение данного коннектора производятся линейно, в отличие от коннекторов FC и SC, в которых подключение вращательное. Благодаря этому, а также специальной «защёлке», обеспечивается достаточно жёсткая фиксация в оптической розетке. Разъёмы SC используются, в основном, на стационарных объектах. По цене несколько дороже разъёмов FC и SC.

Синим цветом маркируются одномодовые SC-разъёмы, серым цветом — многомодовые разъёмы, зелёным цветом — одномодовые разъёмы с классом полировки APC (со скошенным торцом).

Коннекторы LC

Оптический разъём LC внешне похож на разъём SC, но меньше него по размерам, благодаря чему при помощи LC-разъёмов легко реализуются кроссовые оптические соединения высокой плотности. Фиксация в оптической розетке осуществляется при помощи защелки.

Коннекторы FC

Разъёмы FC выполнены из керамической сердцевины и металлического наконечника. Фиксация в оптической розетке происходит за счёт резьбового соединения. Разъёмы FC обеспечивают низкий уровень потерь и минимум обратных отражений, а благодаря надёжной фиксации используются для организации связи на подвижных объектах, сетях связи железных дорог и других ответственных применениях.

Коннекторы ST

Разъёмы ST характеризуются простотой и надежностью в эксплуатации, легкостью установки и относительно невысокой ценой. Внешне похожи на разъёмы FC, но, в отличие от FC, в которых фиксация в розетке осуществляется при помощи резьбового соединения, разъёмы ST относятся к разряду BNC-коннекторов (соединение осуществляется при помощи разъёма байонет). ST-разъёмы чувствительны к вибрации и применяются с этими ограничениями.

Разъёмы ST используются, в основном, для подключения оптического оборудования к магистральным линиям и в локальных вычислительных сетях.

Коннекторы DIN

Разъём DIN похож на разъём FC, но имеет меньшие размеры. Керамический сердечник диаметром 2,5 мм, выступает за пределы пластикового корпуса, который, в свою очередь, имеет фиксатор, препятствующий вращению сердечника вокруг своей. Разъёмы DIN часто используются в измерительном оборудовании.

Коннекторы Е-2000

Е-2000 – один из наиболее сложных оптических разъёмов. Подключение и отключение осуществляется линейно (push-pull), а открытие — посредством специальной вставки-ключа. Поэтому, ошибочно вынуть такой коннектор практически не представляется возможным.

Разъёмы E-2000 имеют в своей конструкции специальные заглушки, которые автоматически закрывают торец разъёма при его отключении от оптической розетки, благодаря чему исключается попадание пыли внутрь.

Разъёмы Е-2000 отличает высокая надежность и плотность монтажа. Квадратное сечение разъёма обеспечивает лёгкую реализацию дуплексных соединений.

Разъемы с увеличенной плотностью монтажа

Коннекторы MT-RJ

Разъёмы MT-RJ изготавливаются в виде дуплексных пар.

Коннекторы VF-45 (SJ)

Хвостовик разъёма наклонён примерно под углом от плоскости соединения волокон. Разъём VF-45 (SJ) оборудован самозащёлкивающейся противопылевой шторкой.

Коннекторы MU

Читать еще:  Паркетник или кроссовер в чем отличие. Чем кроссовер отличается от внедорожника

Аналог разъёма SC, меньший по размерам. Центратор – керамический, диаметром 1,25 мм, остальные части пластиковые.

Цвета оптических коннекторов (разъёмов).

• FC и ST – никелированная латунь

• SC и LC дуплексный или симплексный многомодовый – бежевый или серый

• SC и LC дуплексный или симплексный одномодовый – синий

• SC/APC симплексный (simplex) – зеленый

Классы полировки оптических коннекторов

Пожалуй, главными характеристиками оптических разъемов являются вносимое затухание и обратное отражение. Оптическое затухание оказывает более сильное влияние на качество сигнала, чем обратное отражение.

Показатель обратного затухания зависит, прежде всего, от поперечного отклонения сердцевин соединяемых оптических волокон.

Полировка оптических разъёмов обеспечивает плотность соединения оптических волокон друг с другом и уменьшает воздушный зазор, что, в свою очередь, уменьшает обратное отражение сигнала.

Существует 4 класса полировки: PC, SPC, UPC и APC.

Полировка PC, SPC, UPC:


РС (Physically Contact)

К классу PC относятся коннекторы ручной полировки, а также разъёмы, изготовляемые по клеевой технологии. Скорость применения – до 1 Гбит/с.

SРС (Super Physically Contact)

Механическая полировка торцов оптических коннекторов. Обеспечивает более плотное прилегание и использование в системах со скоростями более 1,25 Гбит/с.

UPC (Ultra Physically Contact)

Автоматическая полировка. Плоскости соединяемых коннекторов прилегают ещё более плотно, чем в PC и SPC, поэтому такие коннекторы используются в системах передачи информации со скоростями 2,5 Гбит/с и выше.

Полировка APC (Angled Physically Contact):

Контактная поверхность данных разъёмов скошена на 8 – 12 градусов от перпендикуляра. Такой способ шлифовки применяется для снижения уровня энергии отраженного сигнала ( не менее 60 дБ). Коннекторы АРС используются только совместно с другими коннекторами APC и не могут применяться в соединении с другими видами коннекторов (PC, SPC, UPC). Отличаются зеленой маркировкой пластиковых наконечников.

Виды оптических патчкордов

Симплексные (SX) и дуплексные (DX) патчкорды

Оптические патчкорды могут быть симплексными (на одно соединение) и дуплексными (на два соединения).

Аккумуляторы внешне одинаковы, разные внутри

В очередной раз плавно поворачивается ключ в замке зажигания или легко нажимается кнопка запуска двигателя и .. ничего не происходит. Нет мимолетной вибрации от работы стартера, заканчивающейся сытым урчанием мотора. Работники автосервиса лишь разводят руками и сообщают, что пора менять аккумуляторную батарею (АКБ). Но первую попавшуюся, на удачу, брать не следует. Для правильного выбора, необходимо понимать и знать, что хотя все аккумуляторы изготавливаются и функционируют по единому принципу, но за счет использования уникальных материалов, обладают различными параметрами работы. Ну, а подобрать оптимальный автомобильный аккумулятор можно на сайте http://actor64.ru.

Сейчас рынок аккумуляторов представлен тремя основными типами АКБ: малосурьмянистая, кальциевая и гибридная. Все они представляют собой коробку, поделенную на герметичные отсеки, в которые заливается кислота (электролит). В электролит опущена положительно или отрицательно заряженная пластина из материала, который, вступая в реакцию с кислотой, способствует выделению электроэнергии.

Малосурьмянистая аккумуляторная батарея – самая простая по устройству и дешевая по цене. Пластины выполнены из свинца с небольшим содержанием сурьмы, менее 5%. Это позволило избавиться от постоянных неудобств со снижением уровня электролита, который в классических аккумуляторах имел свойство «выкипать». Также у батареи, содержащей сурьму в пластинах, значительно снизился уровень саморазряда при хранении. Огромным плюсом таких АКБ является то, что они совсем нетребовательны к электроначинке автомобиля. Даже постоянные перепады напряжения в бортовой электрической сети совсем не изменяют параметры такого аккумулятора, в отличие от других типов АКБ. Малосурьмянистая батарея не боится глубоких разрядов и легко «оживает» после подзарядки. Из недостатков, можно назвать наибольший среди всех типов АКБ показатель саморазрядки. Малосурьмянистый аккумулятор подойдет для автомобилей с прихотливой бортовой сетью.

Кальциевая аккумуляторная батарея – идентична устройству малосурьмянистой батареи, но вместо сурьмы используется кальций. Пластины легируются кальцием и несут в себе оба заряда, на аккумуляторы такого типа наносится маркировка «Са/Са». К основным достоинствам кальциевой АКБ относится сниженный показатель саморазрядки. Не боится перегрузок и способен выдержать повышение напряжения в сети до 16 В, но резкие перепады напряжения могут повредить АКБ. При правильной эксплуатации, аккумулятор способен проработать очень долго, расчетный срок службы более 5 лет. К сожалению, кальциевая АКБ боится глубокой разрядки. Достаточно несколько раз допустить снижение заряда ниже 50 % и в аккумуляторе происходят необратимые процессы по снижению энергоемкости. Кальциевая аккумуляторная батарея лучше всего подходит для дальних регулярных поездок или для автомобиля с мощным мотором. Цены на кальциевые АКБ – самые высокие.

Гибридная аккумуляторная батарея – состоит из отрицательно заряженных кальциевых пластин и «плюсовых» малосурьманистых пластин. Аккумулятор маркируется «Са+», совмещает в себе лучшее от двух предыдущих типов АКБ: сниженное наполовину «выкипание» воды и устойчивость к перезарядке. Характеристики «золотой середины» как по цене, так и по техническим параметрам позволили данным АКБ добиться лидирующих позиций на рынке. Гибридный аккумулятор является оптимальный, для иномарок средней руки и хорошо себя зарекомендовал при езде в «городском» режиме. Из отрицательных характеристик – боязнь отрицательных температур.

Читать еще:  Почему нельзя прогревать двигатель. Как нельзя прогревать машину зимой

Но какая бы надежная АКБ не была установлена на автомобиле, все равно она требует постоянного контроля и обслуживания.

Видео по теме:

Аккумуляторы автомобильные: как выбрать , советы специалистов.

Мультиплексоры и демультиплексоры: схемы, принцип работы

Мультиплексором — называют комбинационное устройство, обеспечивающее передачу в желаемом порядке цифровой информации, поступающей по нескольким входам на один выход. Мультиплексоры обозначают через MUX (от англ. multiplexor), а также через MS (от англ. multiplex or selector).

Схематически мультиплексор можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства. Кроме информационных входов в мультиплексоре имеются адресные входы и, как правило, разрешающие (стробирующие). Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных входов n и числом адресных входов m действует соотношение n = 2 m , то такой мультиплексор называют полным. Если n m , то мультиплексор называют неполным.

Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, т. е. могут блокировать действие всего устройства.

Функционирование двухвходового мультиплексора

Рассмотрим функционирование двухвходового мультиплексора (2 →1), который условно изображен в виде коммутатора, а состояние его входов Х1Х2 и выхода Y приведено в таблице (рис. 3.41).

Исходя из таблицы, можно записать следующее уравнение:

На рис. 3.42 показаны реализация такого устройства и его условное графическое обозначение.

Основой данной схемы являются две схемы совпадения на элементах И, которые при логическом уровне «1» на одном из своих входов повторяют на выходе то, что есть на другом входе.

Если необходимо расширить число входов, то используют каскадное включение мультиплексоров. В качестве примера рассмотрим мультиплексор с четырьмя входами (4 → 1), построенный на основе мультиплексоров (2 → 1).

Схема и таблица состояний такого мультиплексора приведены на рис.3.43.


Мультиплексоры являются универсальными логическими устройствами, на основе которых создают различные комбинационные и последовательностные схемы. Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры часто используют для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и кончая последним.

Мультиплексор как устройство сдвига

Рассмотрим пример использования мультиплексоров для реализации так называемого комбинационного устройства сдвига, обеспечивающего сдвиг двоичного, числа по разрядам. Принцип функционирования данного устройства понятен из схемы устройства и таблицы состояний его входов и выходов (рис. 3.44).


В обозначении мультиплексоров используют две русские буквы КП, например, промышленностью выпускаются такие мультиплексоры, как К155КП1, К531КШ8, К561КПЗ, К555КП17 и др.

Демультиплексором называют устройство, в котором сигналы с одного информационного входа, поступают в желаемой последовательности по нескольким выходам в зависимости от кода на адресных шинах. Таким образом, демультиплексор в функциональном отношении противоположен мультиплексору. Демультиплексоры обозначают через DMX или DMS.

Если соотношение между числом выходов n и числом адресных входов m определяется равенством n= 2 m , то такой демультиплексор называется полным, при n m демультиплексор является неполным.

Функционирование демультиплексора с двумя выходами

Рассмотрим функционирование демультиплексора с двумя выходами, который условно изображен в виде коммутатора, а состояние его входов и выходов приведено в таблице (рис. 3.45).

Из этой таблицы следует: Y1=X·А Y2 = X·А т. е. реализовать такое устройство можно так, как показано на рис. 3.46.


Для наращивания числа выходов демультиплексора используют каскадное включение демультиплексоров. В качестве примера (рис. 3.47) рассмотрим построение демультиплексоров с 16 выходами (1 → 16) на основе демультиплексоров с 4 выходами (1 → 4).

При наличии на адресных шинах А и А1 нулей информационный вход X подключен к верхнему выходу DМХ и в зависимости от состояния адресных шин А2 и А3 он может быть подключен к одному из выходов DMX1. Так, при А2 = А3 = 0 вход X подключен к Y. При А = 1 и А1 = 0 вход X подключен к DMX2, в зависимости от состояния А2 и А3 вход соединяется с одним из выходов Y4 − Y7 и т.д.

Функции демультиплексоров

Функции демультиплексоров сходны с функциями дешифраторов. Дешифратор можно рассматривать как демультиплексор, у которого информационный вход поддерживает напряжение выходов в активном состоянии, а адресные входы выполняют роль входов дешифратора. Поэтому в обозначении как дешифраторов, так и демультиплексоров используются одинаковые буквы — ИД. Выпускают дешифраторы (демультиплексоры) К155ИДЗ, К531ИД7 и др.

При использовании КМОП-технологии можно построить двунаправленные ключи, которые обладают возможностью пропускать ток в обоих направлениях и передавать не только цифровые, но и аналоговые сигналы. Благодаря этому можно строить мультиплексоры-демультиплек-соры, которые могут использоваться либо как мультиплексоры, либо как демультиплексоры. Мультиплексоры-демультиплексоры обозначаются через MX. Среди выпускаемых мультиплексоров-демультиплексоров можно выделить такие, как К564КП1, К590КП1. Мультиплексоры-демультиплексоры входят в состав серий К176, К561, К591, К1564.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector