Конденсатор в цепь фары
Конденсатор в цепи постоянного и переменного тока
Конденсатор в цепи постоянного тока
Итак, берем блок питания постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:
А вот если напрямую сделать, то горит:
Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!
Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.
Конденсатор в цепи переменного тока
Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор част оты вполне сойдет:
Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой резистор на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:
Спаиваем как-то вот так и подаем сигнал с генератора частоты:
Далее за дело берется Цифровой осциллограф OWON SDS 6062. Что такое осциллограф и с чем его едят, читаем зде сь. Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.
Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.
Все это будет выглядеть примерно вот так:
Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?
На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F – это частота, Ma – амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал – желтым, для удобства восприятия.
Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.
Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то “лохматый”. Это связано с так называемыми “шумами“. Шум – это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо “шумит” резистор. Значит “лохматость” сигнала – это сумма синусоиды и шума.
Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз. Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени :-), что конечно же, невозможно.
Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:
Давайте увеличим частоту на генераторе до 500 Герц
На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.
Увеличиваем частоту до 1 КилоГерца
На выходе у нас уже 1 Вольт.
Ставим частоту 5 Килогерц
Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше
Увеличиваем до 10 Килогерц
Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.
Ставим 100 Килогерц:
Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.
Отсюда делаем глубокомысленные выводы:
Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2.
Если построить обрезок графика, то получится типа что-то этого:
По вертикали я отложил напряжение, по горизонтали – частоту.
Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.
Смотрим и анализируем значения:
Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Герц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт( в реальности еще меньше из за помех). На частоте 500 Герц – 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.
Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.
С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:
где, ХС – это сопротивление конденсатора, Ом
П – постоянная и равняется приблизительно 3,14
F – частота, измеряется в Герцах
С – емкость, измеряется в Фарадах
Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.
Заключение
Забегая вперед, могу сказать, что в данном опыте мы получили Фильтр Высокой Частоты (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.
Расчет конденсатора для светодиодов
Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.
Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.
Вот так бы выглядела схема подключения настольной светодиодной лампы. А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.
Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.
Принцип работы схем на балластном конденсаторе
В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.
Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.
Для диода абсолютно безразлично, с какой скоростью через него будут «пролетать» электроны. Расчет конде-ра основан на ограничении тока в цепи. Мы можем подать хоть десять киловольт, но если сила тока составит несколько микр оампер, количества электронов, проходящих через светоизлучающий кристалл, хватит для возбуждения лишь крохотной части светоизлучателя и свечения мы не увидим.
В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.
Расчет гасящего конденсатора для светодиода
Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.
Расчет емкости конденсатора для светодиода:
С(мкФ) = 3200 * Iсд) / √(Uвх² — Uвых²)
С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В;
Iсд – номинальный ток диода (смотрим в паспортных данных);
Uвх – амплитудное напряжение сети — 320В;
Uвых – номинальное напряжение питания LED.
Можно встретить еще такую формулу:
C = (4,45 * I) / (U — Uд)
Она используется для маломощных нагрузок до 100 мА и до 5В.
Расчет конденсатора для светодиода (калькулятор онлайн):
Для наглядности проведём расчёт нескольких схем подключения.
Подключение одного светодиода
Для расчета емкости конде-ра нам понадобится:
- Максимальный ток диода – 0,15А;
- напряжение питания диода – 3,5В;
- амплитудное напряжение сети — 320В.
Для таких условий параметры конде-ра: 1,5мкФ, 400В.
Подключение нескольких светодиодов
При расчете конденсатора для светодиодной лампы необходимо учитывать, что диоды в ней соединены группами.
- Напряжение питания для последовательной цепочки – Uсд * количество LED в цепи;
- сила тока – Iсд * количество параллельных цепочек.
Для примера возьмём модель с шестью параллельными линиями из четырёх последовательных диодов.
Напряжение питания – 4 * 3,5В = 14В;
Сила тока цепи – 0,15А * 6 = 0,9А;
Для этой схемы параметры конде-ра: 9мкФ, 400В.
Простая схема блока питания светодиодов с конденсатором
Разберём устройство без трансформаторного блока питания для светодиодов на примере фабричного драйвера LED ламы.
- R1 – резистор на 1Вт, который уменьшает значимость перепадов напряжения в сети;
- R2,C2 – конде-р служит в качестве токоограничителя, а резистор для его разрядки после отключения от сети;
- C3 – сглаживающий конде-р, для уменьшения пульсации света;
- R3 – служит для ограничения перепадов напряжения после преобразования, но более целесообразно вместо него установить стабилитрон.
Какой конденсатор можно использовать для балласта?
В качестве гасящих конденсаторов для светодиодов используются керамические элементы рассчитанные на 400-500В. Использование электролитических (полярных) конденсаторов недопустимо.
Меры предосторожности
Безтрансформаторные схемы не имеют гальванической развязки. Сила тока цепи при появлении дополнительного сопротивления, например прикосновение рукой с оголённому контакту в цепи, может значительно увеличится, став причиной электротравмы.
Силовой конденсатор на 1Ф в помощь АКБ
Устройство автомобиля. Клуб любителей микроавтобусов и минивэнов
Устройство автомобиля ⇒ Силовой конденсатор на 1Ф в помощь АКБ
Сообщение Andrew » 08 мар 2007, 19:07
Идея зародилась давно, но хочу спросить мнение форумчам об этом.
В теории кондер должен сглаживать все пульсации борт.сети, ослаблять паразитические “шумы” проводки, генератора и т.д., упростить жизнь штатной АКБ.
На практите как будет, может кто пробовал?
Сообщение Alexandr » 08 мар 2007, 19:53
Сообщение ил-31 » 08 мар 2007, 20:38
Сообщение Andrew » 08 мар 2007, 20:45
2500р.
С автозарядкой и защитой от КЗ.
Сообщение ил-31 » 09 мар 2007, 07:04
Сообщение [ZLOY]GLB » 09 мар 2007, 08:09
Сообщение Andrew » 09 мар 2007, 09:20
[ZLOY]GLB,
+1
Отличная цена. Неплохой кондер. Дело за малым – заказать его
Сообщение Hant » 09 мар 2007, 13:34
Сообщение Alexandr » 10 мар 2007, 12:30
Сообщение ил-31 » 11 мар 2007, 22:33
Сообщение Hant » 12 мар 2007, 16:19
Подключение конденсатора к автомобильной магнитоле.
Что надо знать в случае если вы собрались подключить конденсатор (емкости) в автомагнитоле к аудиоустройствам (сабвуферу, усилителю).
ГЛАВА НИКАКАЯ, из которой тем не менее можно кое-что узнать
Что такое конденсатор? Зачем нужен конденсатор для сабвуфера? Какие конденсаторы бывают? Если вы даже не задаетесь такими вопросами в следствии знания что и зачем, то совершенно не факт, что у вас конденсатор правильно подключен к аудиоаппаратуре автомобиля, обеспечивая ее качественное питание. Данный абзац все же для тех, кто не знает что из себя представляет конденсатор и как он работает. Мне хотелось бы пошагово объяснить задачи и физические процессы происходящие в конденсаторе, а читатель сам из логики рассуждений сделает вывод об оптимальном конденсаторе.
Рисунок 1 Внешний вид конденсатора.
Конденсатор представляет из себя металические пластины, свернутые в трубку по эвольвенте, между которыми проложен диэлектрический материал (бумага, слюда и т.д.). Вся эта конструкция собрана в корпусе, с двумя выводами от каждой пластины.
Задачи конденсатора в электросхеме:
1 конденсатор нужен для сохранения (поддержания) потенциала электричества (заряда на его выводах);
2 конденсатор должен максимально долго удерживать данный потенциальный заряд;
3 напряжение и сила тока при разрядке конденсатора должны быть не менее расчетного (для предотвращения «провалов», скачков напряжения).
Физические процессы происходящие в конденсаторе: (согласно пунктам задач)
1 Мы знаем, что противоположные заряды имеют свойства притягиваться друг к другу, если мы обеспечим соединение потенциалов, то произойдет разряд. Но если мы только поднесем один заряд к другому, не разряжая его, то между зарядами появятся более значимые силы притяжения друг к другу в следствии сокращения расстояния. В конденсаторе расположеные электропроводные пластины одна параллельно другой, разделенные диэлектриком и собирают на себя заряды, но в следствии большого сопротивления диэлектрика они не могут разрядиться мгновенно.
2 Но тем не менее и через данный диэлектрик конденсатор способен разряжаться. Чем более качественно сделан конденсатор, тем дольше на его пластинах будет оставаться разность ранее заряженных разных потенциалов.
3 Конденсатор рассчитан на определенное напряжение. Это зависит от конструкции и применяемых материалов. Большее напряжение может пробить диэлектрик и тем самым нарушить весь замысел работы и как следствие вывести конденсатор из строя. Пластины могут вместить в себя определенный потенциал заряда, данный потенциал конденсатора фактически и характеризуется его емкостью. Это зависит от размеров пластин и их расположения.
ГЛАВА ПЕРВАЯ какая емкость конденсатора должна прменяться для моей аппаратуры.
И так основы есть, развивая выше упомянутые аксиомы о работе конденсатора можно сделать и заключения, о том куда надо стремится изготовителям конденсаторов, и потребителям при выборе конденсатора для питании аудиоаппаратуры своего автомобиля (автомагнитола, сабвуфер, усилитель).
В автомобиле часто возникают “провалы” по напряжению питания. Это связано с недостаточностью выдать определенную мощность, в следствии кратковременного скачка увеличения потребляемой мощности при воспроизведении как правило музыки с низкими частотами. Дело в том, что низкие частоты при входе на каскадах усилителей (вход транзисторов – эммитер, но НЧ подаются на базу которая и управляет током эммитер – коллектор) долговременно относительно высоких частот открывают полупроводниковую проходимость электронных переходов, уменьшая тем самым сопротивления нагрузки на источник питания и увеличивая ту самую кратковременную мощность потребления. Установка конденсатора в автомобиль является фактически эмпирической (определяемой опытным путем) зависимостью, так как спектр воспроизводимых частот будет требовать разных режимов питания, но со знанием одного, что кашу маслом не испортишь. Поэтому в случае выбора конденсатора для сабвуфера, магнитолы не советовал выбирать емкость менее 60 000- 65 000 мкФ. Или если угодно определения емкости конденсатора можно произвести по формуле – 1 фарад емкости конденсатора на киловатт мощности нагрузки.
Парадокс применения конденсатора в автомобиле и надо ли брать конденсатор.
Хотелось бы дополнительно сказать, что никто у себя дома не задумывается, о применении дополнительных конденсаторов для получения НЧ на акустике, все в большинстве своем уже реализовано в блоках радиоаппаратуры. В автомобилях питание при помощи конденсатора стало нормой, это можно отчасти отнести к радио тюнингу автомобиля. Брать или не брать конденсатор для каждого из нас будет только его собственным выбором.
ГЛАВА ВТОРАЯ подключение конденсатора в электросхему.
Подключение конденсатора к аудиоаппаратуре в автомобиле (автомагнитола, сабвуфер, усилитель) должно осуществляться в соответсвии с замыслом элетротехнического элемента. Подключить конденсатор необходимо перед входом на потребитель, согласно полярности питания и конденсатора, то есть плюс с плюсом и минус с минусом (рисунок 2а).
Но при этом подключении необходимо четко понимать, для чего нужен конденсатор. В нашем случае конденсатор необходим только для звуковоспроизводящей аппаратуры (магнитола, усилитель, сабвуфер). Производя подключение сабвуфера, магнитолы, усилителя и впоследствии конденсатора мы забываем, что автомобиль это не студия звукозаписи, а уже сложившееся конструкторское решение по схемотехнике, со своими потребителями в том числе. В итоге получается если осуществить подключение по рисунку 2а, то кроме питания магнитолы, сабвуфера, усилителя мы фактически будем поддерживать и дополнительных потребителей автомобиля, которые на данном рисунке не учтены, но они есть. Для исключения питания дополнительных потребителей конденсатором, необходимо установить диод (рисунке 2б). Диод будет ограничивать разряд конденсатора на дополнительных потребителей автомобиля, тем самым позволяя конденсатору максимально эффективно использовать свою емкость только для аудиоустройств. (магнитола, усилитель, сабвуфер)
ГЛАВА ТРЕТЬЯ Умный конденсатор или как ограничить излишнее энергопотребление и предотвратить нагрузку на проводку автомобиля.
Но и это оказывается не все. Как ранее мы говорили конденсатор имеет свойство саморазряжаться, это свойство фактически ставит конденсатор в один ряд с потребителями. Излишние потребители на автомобиле пагубно сказываются на аккумуляторе (о чем ранее писалось и про магнитолу в разделе Подключение автомагнитолы в автомобиле. Как правильно подключить магнитолу с ISO разъемом.
http://ktonaavto.ru/remont-i-obsluzhivanie/elektrooborudovan. ), особенно при длительной стоянке и в зимнее время. Когда аккумулятор не получает необходимой зарядки и о режимах работы и зарядки аккумулятора.Для решения данной задачи в настоящий момент уже выпускаются специализированные конденсаторы с системой запуска, то есть конденсатор подключается в сеть только при поступлении напряжении на один из специализированных выводов (Ignition) рисунок 3.
Рисунок 3 конденсатор для магнитолы, сабвуфера, усилителя с отключением из сети
Часто конденсаторы бывают с вольтметрами для визуального контроля за «провалами» напряжения питания, рисунок 4.
рисунок 4 Конденсатор с встроенным вольтметром.
Если вы будет применять один из таких конденсаторов, то обратите внимание на то, что питание на проводе запуска (Ignition) при стоянке отсутствовало, тем самым это будет блокировать подключения конденсатора в сеть автомобиля. Если у вас обычный конденсатор, то несложно и самому реализовать схему отключения питания конденсатора от питания, при помощи реле. На рисунке 5 показана такая схема.
рисунок 5 Подключение конденсатора для сабвуфера, автомагнитолы, усилителя.
Выключатель для включения выключения конденсатора можно вывести в любое удобное место в салоне автомобиля.
ГЛАВА ЧЕТВЕРТАЯ соблюдайте полярность на элетролитическом конденсаторе.
Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения в следствии химичко физических особенностей взаимодействия электролита с диэлектриком. При подаче обратной полярности напряжения на выводы электролитического конденсатора они обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри корпуса и, как следствие, с вероятностью взрыва корпуса из за повышенного давления в нем.
ГЛАВА ПОСЛЕДНЯЯ но не по важности
конденсатор практически мгновенно заряжается, при этом в его электроцепи протекает большой кратковременный ток. Ток зарядки конденсатора может быть настолько сильным, что сожжет предохранители в автомобиле или контакты с высоким сопротивлением (низким сечением соединения). В рабочем режиме конденсатор практически никогда не разряжается полностью, соответсвенно его ток не столь критичен, кроме того время разряда намного дольше, что не вызывает эффета индукционного тока как при “запуске” – первоначальной зарядке конденсатора. В следствии выше описанного зарядку конденсатора лучше производить через сопротивление (резистор). В данном случае таким резистором будет диод, так как он тоже имеет сопротивление (несколько десятков Ом), при этом мощность диода необходимо подобрать как миниум в 1,5- 2 раза выше чем мощность магнитолы. В случае отсутствия диода в Вашей схеме для зарядки конденсатора применяйте обычный классический резистор.